九天雁翎的博客
如果你想在软件业获得成功,就使用你知道的最强大的语言,用它解决你知道的最难的问题,并且等待竞争对手的经理做出自甘平庸的选择。 -- Paul Graham

反汇编时的函数识别及各函数调用约定的汇编代码分析


 反汇编时的函数识别及各函数调用约定的汇编代码分析

write by 九天雁翎(JTianLing) -- www.jtianling.com

其实在刚开始工作的时候,我就因为工作中需要处理异常处理时的dump,就分析过C++的函数调用原理,也写过一篇文章,现在因为另外的原因(反外挂)而重新提起,回头看以前写的文章,实在是略显稚嫩:)也是,那是9个月前的事情了。

原文《C++函数调用原理理解》http://www.jtianling.com/archive/2008/06/01/2501238.aspx

 

首先看一个很简单的例子(此例子的更简单原型(一个add函数)来自于《加密与解密》一书第三版第4章的第2节),这里列举出了各种函数调用约定的ADD函数(其实还有PASCAL调用约定,但是作为C++程序员我忽略了那种,所以我提到的几种函数调用约定都是参数反向入栈的,此点再下面不再提起)这里的编译器选择了VC6,不是我喜欢仿古。。。但是,因为VS2005(我平时用的)的优化太过于激进。。。。不知道此词妥否。。。。起码一般的小测试程序几乎不能反汇编得到什么信息,一般就是直接在编译器完成了很多操作了。这个我在以前也提到过,

比如在《Inside C++ Object 》 阅读笔记(1), NRV(Named Return Value)一文中:

http://www.jtianling.com/archive/2008/12/09/3486211.aspx

 

示例源代码1:

 

 1 int __cdecl Add1(int x,int y) // default
 2 {
 3         return(x+y);
 4 }
 5
 6 int __stdcall Add2(int x,int y)
 7 {
 8         return(x+y);
 9 }
10
11 int __fastcall Add3(int x,int y)
12 {
13         return(x+y);
14 }
15
16 int inline Add4(int x,int y)
17 {
18         return(x+y);
19 }
20
21 int main( )
22 {
23         int a=5,b=6;
24         Add1(a,b);
25         Add2(a,b);
26         Add3(a,b);
27         Add4(a,b);
28         return 0;
29  }

 

 

Release编译后,反汇编代码及其注释如下:

 

.text:00401030 ; main函数

.text:00401030

.text:00401030 ; int __cdecl main(int argc, const char **argv, const char *envp)

.text:00401030 _main proc near ; CODE XREF: _mainCRTStartup+AFp

.text:00401030 push 6

.text:00401032 push 5

.text:00401034 call Add1 ; 将参数压入栈中,并调用Add1(__cdecl调用约定函数,

.text:00401034 ; 即C语言的调用规范,调用者负责栈的维护)

.text:00401039 add esp, 8 ; 此处由调用者维护调用了Add1后的栈,

.text:00401039 ; esp加8是因为两个参数

.text:0040103C push 6

.text:0040103E push 5

.text:00401040 call Add2 ; 参数入栈,并调用Add2(__stdcall调用规范,windows

.text:00401040 ; API的默认调用规范,由被调用者负责维护栈)所以

.text:00401040 ; 此函数调用完后,main函数中不需要有维护栈的操作

.text:00401045 mov edx, 6

.text:0040104A mov ecx, 5

.text:0040104F call Add3 ; 将参数赋值给寄存器edx,ecx,调用Add3(Fastcall调用约定,

.text:0040104F ; 函数尽量通过寄存器传递,也是由被调用者自己维护栈)

.text:00401054 xor eax, eax ; 此处清空eax作为main函数的返回值返回了,注意到并没有

.text:00401054 ; Add4(inline函数)的调用,并且因为返回值并没有用,

.text:00401054 ; 所以此函数即使在VC6中,也忽略了。

.text:00401056 retn

.text:00401056 _main endp

 

 

 

例2,稍微复杂一点

源码:

 1 #include
 2
 3 int __cdecl Add1(int x,int y) // default
 4 {
 5     int z = 1;
 6     return(x+y+z);
 7 }
 8
 9 int __stdcall Add2(int x,int y)
10 {
11     int z = 1;
12     return(x+y+z);
13 }
14
15 int __fastcall Add3(int x,int y)
16 {
17     int z = 1;
18     return(x+y+z);
19 }
20
21 int inline Add4(int x,int y)
22 {
23     int z = 1;
24     return(x+y+z);
25 }
26
27 int main( )
28 {
29     int a=5,b=6;
30     int c = 0;
31
32     c += Add1(a,b);
33     c += Add2(a,b);
34     c += Add3(a,b);
35     c += Add4(a,b);
36     printf("%d",c);
37     return 0;
38  }
39

 

比前面的例子多了一个变量c来累加返回值并输出,每个函数中再多了一个局部变量。

 

Release编译后,反汇编代码及其注释如下:

.text:00401030 ; main函数

.text:00401030

.text:00401030 ; int __cdecl main(int argc, const char **argv, const char *envp)

.text:00401030 _main proc near ; CODE XREF: _mainCRTStartup+AFp

.text:00401030

.text:00401030 argc = dword ptr 4

.text:00401030 argv = dword ptr 8

.text:00401030 envp = dword ptr 0Ch

.text:00401030

.text:00401030 push esi ; 以下可以看到,esi后来一直用作局部变量c,

.text:00401030 ; 所以此处先保存以前的值

.text:00401031 push 6

.text:00401033 push 5

.text:00401035 call Add1

.text:0040103A add esp, 8

.text:0040103D mov esi, eax ; 默认约定eax是返回值,无论哪种调用约定都是一样的,

.text:0040103D ; 并且因为C/C++函数肯定只能由一个返回值,所以确定

.text:0040103D ; 是eax这一个寄存器也没有关系

.text:0040103F push 6

.text:00401041 push 5

.text:00401043 call Add2

.text:00401048 mov edx, 6

.text:0040104D mov ecx, 5

.text:00401052 add esi, eax

.text:00401054 call Add3

.text:00401059 lea eax, [esi+eax+0Ch] ; 内联的作用,Add4还是没有函数调用,并且用一个lea指令

.text:00401059 ; 实现了c+Add3()+5+6的操作,其中5+6的值在编译器确定

.text:0040105D push eax

.text:0040105E push offset aD ; "%d"

.text:00401063 call _printf

.text:00401068 add esp, 8 ; 可见C语言库函数的调用遵循的是__cdecl约定,所以此处

.text:00401068 ; 由main函数维护栈

.text:0040106B xor eax, eax

.text:0040106D pop esi

.text:0040106E retn

.text:0040106E _main endp

 

与前一个例子重复的内容我注释也就不重复了。

一下具体看看各个Add函数的内容

.text:00401000 Add1 proc near ; CODE XREF: _main+5p

.text:00401000

.text:00401000 arg_0 = dword ptr 4

.text:00401000 arg_4 = dword ptr 8

.text:00401000

.text:00401000 mov eax, [esp+arg_4] ; 因为函数是如此的简单,所以此处并没有将ebp入栈,也

.text:00401000 ; 并没有通过堆栈为z局部变量开辟空间,而是直接用esp

.text:00401000 ; 取参数,用lea指令来完成+1,以下几个函数相同

.text:00401004 mov ecx, [esp+arg_0]

.text:00401008 lea eax, [ecx+eax+1]

.text:0040100C retn ; 这里可以看到Add1函数并没有在内部维护栈,原因也说了

.text:0040100C Add1 endp ; __cdecl调用约定是由调用者来维护栈的

.text:0040100C

.text:0040100C ; ---------------------------------------------------------------------------

.text:0040100D align 10h

.text:00401010

.text:00401010 ; =============== S U B R O U T I N E =======================================

.text:00401010

.text:00401010

.text:00401010 Add2 proc near ; CODE XREF: _main+13p

.text:00401010

.text:00401010 arg_0 = dword ptr 4

.text:00401010 arg_4 = dword ptr 8

.text:00401010

.text:00401010 mov eax, [esp+arg_4]

.text:00401014 mov ecx, [esp+arg_0]

.text:00401018 lea eax, [ecx+eax+1]

.text:0040101C retn 8 ; 此处可以看到Add2自己维护了栈,retn 8相当于

.text:0040101C Add2 endp ; add esp 8

.text:0040101C ; retn

.text:0040101C ; ---------------------------------------------------------------------------

.text:0040101F align 10h

.text:00401020

.text:00401020 ; =============== S U B R O U T I N E =======================================

.text:00401020

.text:00401020

.text:00401020 Add3 proc near ; CODE XREF: _main+24p

.text:00401020 lea eax, [ecx+edx+1] ; 通过寄存器来传递参数,速度自然快,也不破坏栈,所以

.text:00401020 ; 也不用维护,此处的参数较少,所以可以达到完全不用

.text:00401020 ; 栈操作

.text:00401024 retn

.text:00401024 Add3 endp

.text:00401024

 

至此,完全没有源码,看到一个函数的调用,大概也知道参数是什么,返回值是什么,栈维护的操作是在干什么了。

这里再看两个复杂点的例子,一个是局部变量多一点的Add5,一个是参数多一点的fastcall调用的函数Add6

 1 #include
 2
 3 int __cdecl Add5(int x,int y) // default
 4 {
 5     int z1 = 1;
 6     int z2 = ++z1;
 7     int z3 = ++z2;
 8     return(x+y+z1+z2+z3);
 9 }
10
11 int __fastcall Add6(int x,int y,int z)
12 {
13     return(x+y+z);
14 }
15
16
17 int main( )
18 {
19     int a=5,b=6;
20     int c = 0;
21
22     c += Add5(a,b);
23     c += Add6(a,b,c);
24
25     printf("%d",c);
26     return 0;
27  }

 

反汇编:

.text:00401020 ; int __cdecl main(int argc, const char **argv, const char *envp)

.text:00401020 _main proc near ; CODE XREF: _mainCRTStartup+AFp

.text:00401020

.text:00401020 argc = dword ptr 4

.text:00401020 argv = dword ptr 8

.text:00401020 envp = dword ptr 0Ch

.text:00401020

.text:00401020 push esi

.text:00401021 push 6

.text:00401023 push 5

.text:00401025 call Add5

.text:0040102A add esp, 8

.text:0040102D mov esi, eax ; 保存第3个参数(即Add5的返回值)到esi

.text:0040102F mov edx, 6

.text:00401034 mov ecx, 5

.text:00401039 push esi ; 虽然时fastcall,但是edx,ecx不够用的时候,还是使用了栈

.text:0040103A call Add6

.text:0040103F add esi, eax

.text:00401041 push esi

.text:00401042 push offset aD ; "%d"

.text:00401047 call _printf

.text:0040104C add esp, 8

.text:0040104F xor eax, eax

.text:00401051 pop esi

.text:00401052 retn

.text:00401052 _main endp

 

 

Add函数:

.text:00401000 ; =============== S U B R O U T I N E =======================================

.text:00401000

.text:00401000

.text:00401000 Add5 proc near ; CODE XREF: _main+5p

.text:00401000

.text:00401000 arg_0 = dword ptr 4

.text:00401000 arg_4 = dword ptr 8

.text:00401000

.text:00401000 mov eax, [esp+arg_4]

.text:00401004 mov ecx, [esp+arg_0]

.text:00401008 lea eax, [ecx+eax+8] ; 虽然我尽量做了很多无用的操作,但是连VC6都要把这些

.text:00401008 ; 操作优化掉

.text:0040100C retn

.text:0040100C Add5 endp

.text:0040100C

.text:0040100C ; ---------------------------------------------------------------------------

.text:0040100D align 10h

.text:00401010

.text:00401010 ; =============== S U B R O U T I N E =======================================

.text:00401010

.text:00401010

.text:00401010 Add6 proc near ; CODE XREF: _main+1Ap

.text:00401010

.text:00401010 arg_0 = dword ptr 4

.text:00401010

.text:00401010 lea eax, [ecx+edx]

.text:00401013 mov ecx, [esp+arg_0] ; fastcall在VC中只会使用ecx,edx两个寄存器来传递参数,

.text:00401013 ; 当参数超过2个时,还是得通过栈来传递

.text:00401017 add eax, ecx

.text:00401019 retn 4

.text:00401019 Add6 endp

.text:00401019

.text:00401019 ; ---------------------------------------------------------------------------

 

 

 

 

 

write by 九天雁翎(JTianLing) -- www.jtianling.com

分类:  汇编和反汇编 
标签:  C++ 

Posted By 九天雁翎 at 九天雁翎的博客 on 2009年06月14日

分享到:

前一篇: 从最简单的Win32汇编程序,HelloWorld说起 后一篇: 在C++中内嵌汇编代码分析